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In this program we created, studied, and developed applications for epitaxial 
metal-semiconductor heterostructures and nanostructures. The epitaxial 
metal-semiconductor nanocomposites are new electronic materials that can 
have substantially different properties from conventional doped 
semiconductors. Our approach was to use molecular beam epitaxy (MBE) 
growth to create epitaxial metal-semiconductor structures containing 
embedded nanoparticles, epitaxial films and metal-semiconductor junctions. 
Unlike current electronic technologies that must rely on individual dopant 
atoms to provide carriers and on highly imperfect polycrystalline metal films 
to provide electrical contacts, the new epitaxial nanoparticles and films 
provide a wide distribution of electron energies within a semiconductor and 
provide a very controlled and perfect contact to semiconductors. We studied 
these materials with the goal of reduction and engineering of semiconductor 
p-n junction barriers by embedding metallic nanoparticles in the junctions. 
We incorporated epitaxial metallic nanoparticles of erbium arsenide and 
erbium antimonide in GaAs, InGaAs and GaSb structures by molecular 
beam epitaxy growth. Collaborating faculty member Susanne Stemmer 
obtained direct evidence from Z-contrast scanning transmission electron 
microscopy that the metal nanoparticles of ErAs grow in a perfectly 
registered rocksalt structure within the zincblende semiconductor host. 
Current-voltage measurements showed that 

1) Tunnel currents of GaAs np junctions were enhanced by up to five orders 
of magnitude at room temperature at one volt forward bias by incorporation 
of 1.2 monolayers of ErAs deposition at the junction between the n (5x10IS 

cm"3) and p (2xl019 cm"3) GaAs. The tunnel currents exceeded 105 

Amps/cm at +1 V forward bias. 



2) The tunnel current enhancement was approximately one order of 
magnitude greater at +1 V bias for ErAs-enhanced GaAs junctions for p 
grown on n compared to n grown on p. 
3) The tunnel current enhancement was approximately one order of 
magnitude greater at +1 V bias for ErAs-enhanced GaAs junctions relative 
to Al.1Ga.9As junctions. 
4) The tunnel current enhancement was approximately one order of 
magnitude greater at +1 V bias for p = 2xl019 cm"3 doping of GaAs junctions 

18 ^ 
compared to p = 4x 10   cm" doping. 
5) The tunnel current enhancement was approximately one order of 
magnitude greater at +1 V bias for 1.2 monolayers of ErAs deposition 
compared to 0.2 monolayers of ErAs deposition. 
6) The form of the tunneling current versus voltage characteristic in the 
enhanced junctions was well represented by a model of tunneling in series 
through back to back metal- semiconductor junctions. 

The first metal-semiconductor junctions (of TiPtAu on n-doped GaAs (n = 
lxlO17 cm"3)) with and without a 0.6 monolayer deposition of ErAs two 
nanometers below the metal-semiconductor interface were also grown and 
studied. The structure with ErAs had a reduced Schottky barrier and a more 
ideal tunnel characteristic compared to structures with no enhancing ErAs 
deposition. 

Carrier concentrations and electron-hole recombination rates were measured 
in a series of ErAs/InGaAs superlattices. Samples with 40 nm periods 
showed a decrease in conduction electron concentration as the deposition of 
ErAs increased from 0.4 to 1.6 monolayers. Samples with depositions of 1.2 
and 1.6 monolayers froze out at low temperature, while samples with 
depositions of 0.4 and 0.8 monolayers remained fully metallic with ~1012 

electrons per cm2 per layer of ErAs. Partial compensation of the carriers 
was achieved by modulation doping the regions near the ErAs layers with 
beryllium acceptors. Reduction of the superlattice period from 40 nm to 5 
nm reduced electron-hole recombination times to ~2 ps (at 40 nm period) 
and -0.05 ps (at 5 nm period). 

In cooperation with Professor Elliott Brown, Gossard's students grew and 
characterized epitaxial Schottky diodes of epitaxial ErAs films on InGaAlAs 
of various Al contents. Reducing the Al content in the InGaAlAs reduced 
the Schottky barrier height continuously down to and including zero eV. 



Diodes with optimum responsivity at zero applied bias were produced and 
measured. 

We also grew fully epitaxial diodes of n-doped InAs on p-doped GaSb. 
Forward currents of > 1000 Amps per cm" were measured at +1 Volt bias 
and were limited primarily by Ohmic contact resistance. 

The metallic nanoparticles in semiconductors produced: 1) electrical doping of 
semiconductors, 2) electron/hole recombination enhancement, 3) electron/hole 
tunnel junction enhancement, 4) thermal conductivity control, 5) microwave 
rectification improvement and 6) strong electron plasma resonances. 

ErAs particles in GaAs p-n tunnel junctions allowed much stronger tunneling than 
conventional p-n junctions. p-ErAs-n junctions showed up to 105 times more 
current than comparable p-n junction at 1 Volt forward bias. We synthesized 
cascaded photovoltaics with ErAs enhanced tunnel junctions that produced CW 
radiation up to 2 Thz. 

We also formed epitaxial thin films of ErAs on GaAs and InGaAlAs for highly 
ideal and engineerable low-defect contacts and barriers for sensitive low noise 
mm-wave and THz detection. We measured NEP of <9xl0~13 W Hz"1'2 

giving -63 dBm sensitivity at 3.1 GHz with a 8kHz bandwidth. 

We developed epitaxial metal-semiconductor heterostructures and nanostructures 
with record-breaking performance in several areas. 

1. Cascaded solar cells with increased efficiency. Grew cascaded 
AlGaAs solar cells with ErAs-enhanced tunnel junctions with output 
voltages of 2.1 Volts (versus 1.2 Volts with conventional tunnel junctions). 

2. ErAs nanoparticle arrays. Produced high densities of metal 
nanoparticles in InGaAs by co-deposition of ErAs and semiconductor 
species. The arrays have high electrical conductivity, low thermal 
conductivity and are promising for thermoelectric power generation 

3. Highly conductive epitaxial Ohmic contacts.  Produced epitaxial ErAs 
epitaxial films on graded InGaAs structures. Contact resistances are less 
than 2 Ohm-micron2. 

4.   Low noise epitaxial Schottky microwave detectors. Produced 
epitaxial ErAs/InAlGaAs detectors with noise equivalent power below 10 
W Hz12 at 640 GHz. 

•I ! 



5. Terahertz detectors. Produced ErAs nanoparticles in GaAs with best 
reported bandwidth and efficiency for Terahertz detectors (10 times better 
than radiation-damaged SOS detectors and LT-GaAs detectors). 

6. GdN on gallium nitride: We produced the first epitaxial growth of GdN 
on GaN. We found growth conditions to produce micron-thick epitaxial 
films of GdN on GaN templates. We produced GdN (111) films with 
rocksalt structure on (0001) GaN at substrate temperatures below T = 500C. 

The research accomplished under this grant thus established a foundation for 
development of highly conducting contacts for the nitride semiconductors, 
for development of improved artificially structured thermoelectric power 
generation materials, and for new materials for Terahertz wave generation 
and detection. 
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